2x*1+x*1+1/2x*2=300

Simple and best practice solution for 2x*1+x*1+1/2x*2=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x*1+x*1+1/2x*2=300 equation:



2x*1+x*1+1/2x*2=300
We move all terms to the left:
2x*1+x*1+1/2x*2-(300)=0
Domain of the equation: 2x*2!=0
x!=0/1
x!=0
x∈R
Wy multiply elements
2x+x+1/2x*2-300=0
We multiply all the terms by the denominator
2x*2x*2+x*2x*2-300*2x*2+1=0
Wy multiply elements
8x^2*2+4x^2*2-1200x*2+1=0
Wy multiply elements
16x^2+8x^2-2400x+1=0
We add all the numbers together, and all the variables
24x^2-2400x+1=0
a = 24; b = -2400; c = +1;
Δ = b2-4ac
Δ = -24002-4·24·1
Δ = 5759904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5759904}=\sqrt{16*359994}=\sqrt{16}*\sqrt{359994}=4\sqrt{359994}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2400)-4\sqrt{359994}}{2*24}=\frac{2400-4\sqrt{359994}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2400)+4\sqrt{359994}}{2*24}=\frac{2400+4\sqrt{359994}}{48} $

See similar equations:

| 4m-2=4m- | | 5m-12=9m-16 | | z/7+6=5 | | 20+2x=38-x | | 5s-16=64 | | 6^p=17 | | 3x+150=162 | | 1/2-5/6y=2/3y | | p/14=20 | | (17-6÷2)=2y+4×3 | | -5/7x=-10/49 | | x+7/10=3/2 | | 9-49x=0 | | 6x^-2-x^-1-1=0 | | 34-4x=0 | | 616=n^2+n | | 616=5n^2+n | | 14=0.25x+9 | | x+5*4=44 | | 4(4s+1)=196 | | g^2-35g+34=0 | | 2x+5=10x+5 | | (q+10)*3=9 | | x+37=68 | | 4+9x=20+. | | 2-3x=-5x+7 | | 8x+6=2(6x+2) | | 4/9x-2=x+7/9 | | 2x^2+3x-3960=0 | | 2x^2+3x-390=0 | | 2/3x+5=x-102x+15= | | 2x+2=-x+11 |

Equations solver categories