2x(x-6)+2=4(x+2)-12

Simple and best practice solution for 2x(x-6)+2=4(x+2)-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-6)+2=4(x+2)-12 equation:



2x(x-6)+2=4(x+2)-12
We move all terms to the left:
2x(x-6)+2-(4(x+2)-12)=0
We multiply parentheses
2x^2-12x-(4(x+2)-12)+2=0
We calculate terms in parentheses: -(4(x+2)-12), so:
4(x+2)-12
We multiply parentheses
4x+8-12
We add all the numbers together, and all the variables
4x-4
Back to the equation:
-(4x-4)
We get rid of parentheses
2x^2-12x-4x+4+2=0
We add all the numbers together, and all the variables
2x^2-16x+6=0
a = 2; b = -16; c = +6;
Δ = b2-4ac
Δ = -162-4·2·6
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{13}}{2*2}=\frac{16-4\sqrt{13}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{13}}{2*2}=\frac{16+4\sqrt{13}}{4} $

See similar equations:

| 10x-6=-44 | | 2-q=1 | | 2.3x=12.42 | | 2/5-x/4=11/20 | | 53=-v/9 | | 5-j=4 | | 80+0.60x=40+0.70x | | 11y+y+7=-17 | | 7(1-2p)+2p=-(1+11p) | | x^2+25x-225=0 | | -8=x-1-4 | | p-1/2=-1/4p-1/8 | | -8n+4(1-5n=-6n-14 | | 2x^2=7x-7 | | 3(s-7)=6 | | 22p+11p=4p-7 | | 3(x-3)/9=4(x+8)/13 | | 38q-47=59q-89 | | 7x+10-9x=19-15x+13x-9 | | 7x/2=90 | | 2z-6=z-1/2 | | -5x+3x=6 | | x=9-3(-3) | | 2(a-5)+4=20 | | -3-4(3-4a)=-47 | | 1/3k+80=1/2+120 | | 10m=7/5 | | 5(3x-5)+4(8-8x)=-78 | | |12c+8|=|10c| | | 5x*8-3=9 | | 3(s–7)=6 | | V2-3v=0 |

Equations solver categories