If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x-4)-(2x+3)(x-4)=4x(2x-3)-8(1-x)2
We move all terms to the left:
2x(x-4)-(2x+3)(x-4)-(4x(2x-3)-8(1-x)2)=0
We add all the numbers together, and all the variables
2x(x-4)-(2x+3)(x-4)-(4x(2x-3)-8(-1x+1)2)=0
We multiply parentheses
2x^2-8x-(2x+3)(x-4)-(4x(2x-3)-8(-1x+1)2)=0
We multiply parentheses ..
2x^2-(+2x^2-8x+3x-12)-8x-(4x(2x-3)-8(-1x+1)2)=0
We calculate terms in parentheses: -(4x(2x-3)-8(-1x+1)2), so:We get rid of parentheses
4x(2x-3)-8(-1x+1)2
We multiply parentheses
8x^2-12x+16x-16
We add all the numbers together, and all the variables
8x^2+4x-16
Back to the equation:
-(8x^2+4x-16)
2x^2-2x^2-8x^2+8x-3x-8x-4x+12+16=0
We add all the numbers together, and all the variables
-8x^2-7x+28=0
a = -8; b = -7; c = +28;
Δ = b2-4ac
Δ = -72-4·(-8)·28
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{105}}{2*-8}=\frac{7-3\sqrt{105}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{105}}{2*-8}=\frac{7+3\sqrt{105}}{-16} $
| y+-16=-10 | | -2p-50=3(-8p-2) | | k+0.321=–0.6 | | 0.126=(3.629*t)+(0.5*9.8*t^2) | | 13=d÷7 | | 10(1+10n)=-5n+10 | | -9-a=-2(1+a) | | 2x+8=−4x−9 | | n–7=–19 | | 8=t+66 | | 2r+1=r=3 | | 8=t+66–2 | | 4(2r-5)=3r+10 | | (3²x+x)-(5.9^x)=324 | | -8(-8+5v)-5v=-22-2v | | -m+14=-2(4m+7) | | 10x+11=60.5x+1 | | 32.8=8b | | 6=—7+x | | a/32.8=8 | | X.3x-2=4x+8 | | D-8d=7d | | 5=6/x | | 78=3x+15 | | 5280/6=x | | k-17=-4 | | 6x+4=2x+4+4x | | 6=1/2j | | -2c=-40 | | 18=-8y+2(y-6) | | x-3÷5x-9=1 | | 19(x-19)=x+29 |