If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x-20)=80
We move all terms to the left:
2x(x-20)-(80)=0
We multiply parentheses
2x^2-40x-80=0
a = 2; b = -40; c = -80;
Δ = b2-4ac
Δ = -402-4·2·(-80)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{35}}{2*2}=\frac{40-8\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{35}}{2*2}=\frac{40+8\sqrt{35}}{4} $
| 3r-15=6r+12 | | 2f+2.6=8.78 | | 1-5q=-6q+2 | | m(m-3)=-0 | | 10•3^x=40•2^x | | c/4-2.4=1.61 | | -7n-1=-2n+2-6n | | 3/5c-6=7.2 | | (3y-5)(2y-7)(4y+1)=0 | | -36+w=55 | | 8x+7x-90=180 | | 9q-5=76 | | (a-2)(2a=1)=0 | | 4a-1.4=2.6 | | 9+h=-9-8h | | 3/2u-5=-1/2u | | 12x=3,000-4,200 | | 2(q-0.I)=3(0.3-q) | | 3×x-14=46 | | 4h+22=94 | | 7^2x+2=(1/49)^x+5 | | -9=-3+3z | | -10=n/4+-9 | | 23y=-29 | | 7Xn=84;n= | | 9w-14=5(w-6) | | (r+5)(r+1)=0 | | v/4+13=10 | | 8y-5=0+0 | | 2x-4+5(x-2)=14 | | -3x+12=17 | | 9-2t=t-9-t |