2x(x+2)=(x-6)(x+2)

Simple and best practice solution for 2x(x+2)=(x-6)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+2)=(x-6)(x+2) equation:



2x(x+2)=(x-6)(x+2)
We move all terms to the left:
2x(x+2)-((x-6)(x+2))=0
We multiply parentheses
2x^2+4x-((x-6)(x+2))=0
We multiply parentheses ..
2x^2-((+x^2+2x-6x-12))+4x=0
We calculate terms in parentheses: -((+x^2+2x-6x-12)), so:
(+x^2+2x-6x-12)
We get rid of parentheses
x^2+2x-6x-12
We add all the numbers together, and all the variables
x^2-4x-12
Back to the equation:
-(x^2-4x-12)
We add all the numbers together, and all the variables
2x^2+4x-(x^2-4x-12)=0
We get rid of parentheses
2x^2-x^2+4x+4x+12=0
We add all the numbers together, and all the variables
x^2+8x+12=0
a = 1; b = 8; c = +12;
Δ = b2-4ac
Δ = 82-4·1·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*1}=\frac{-4}{2} =-2 $

See similar equations:

| v^2-v+30=0 | | -.3x^2+.1x=-.06 | | 3=7x-26 | | 10x-18=7x-7 | | x^2+3x-2 | | 1.25x^2-3x+.2=0 | | 5/4x^2-3x+1/5=0 | | 24x-30x-6+12x=81-9x | | 4x+3=10+4x | | -6(d+6)=-10 | | v^2=1/25 | | x*1.5=5 | | 3^-x=81 | | 4(x-2)=5x-3 | | 1/2s=2/5 | | 11b+7=;0 | | 11b+7=4” | | -18.5=8+6k-45 | | -5x-6x=8-8x | | -5x-6x=25+8x | | -125-9x+x=35 | | x4+8x3+15x2=0 | | 5-x=3x+6 | | -4c-3=9-c | | -18-4x+5x=8 | | 3∙(2x+7)=8∙(x+2) | | 16-2t=2/3t+9 | | 13/2x=52 | | -13x-4=2-2(x+4) | | +4x+4=+3x+12 | | (1/x)+(1/x+1)=1/6 | | 10x+1=10x+x |

Equations solver categories