2x(x+2)-7=4x-5(2-x)

Simple and best practice solution for 2x(x+2)-7=4x-5(2-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+2)-7=4x-5(2-x) equation:



2x(x+2)-7=4x-5(2-x)
We move all terms to the left:
2x(x+2)-7-(4x-5(2-x))=0
We add all the numbers together, and all the variables
2x(x+2)-(4x-5(-1x+2))-7=0
We multiply parentheses
2x^2+4x-(4x-5(-1x+2))-7=0
We calculate terms in parentheses: -(4x-5(-1x+2)), so:
4x-5(-1x+2)
We multiply parentheses
4x+5x-10
We add all the numbers together, and all the variables
9x-10
Back to the equation:
-(9x-10)
We get rid of parentheses
2x^2+4x-9x+10-7=0
We add all the numbers together, and all the variables
2x^2-5x+3=0
a = 2; b = -5; c = +3;
Δ = b2-4ac
Δ = -52-4·2·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*2}=\frac{4}{4} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*2}=\frac{6}{4} =1+1/2 $

See similar equations:

| 2x(×+2)-7=4x-5(2-x) | | 1-2x+7=5x | | 17÷6=x | | 2(x+5)-7(x+2)=4 | | 5(x-3)+2(3x-1)=2 | | 7(2p+1)‐4(3p+2)=0 | | 5x+2=28-3x | | 3x+17=2-2x | | 4x+3=19+2x | | 8/3x+1/3x=2x+12/3+7/3x | | 13y+8=60 | | 15^(2x-4)=72 | | 32y-12y-32=11 | | F(x)=x^2-18x+85 | | -7h+2h-3=15 | | 10x-11=21 | | x-2=7(4x+5) | | 5x-1+5x=750 | | x/12+9=15 | | 7(a-7)+24=2(a-5) | | 3p^2=6p-4 | | 4x+1+4+51=180 | | 0.8x-0.85-x=6.4 | | (105-2y)+y=80 | | (3x)=x | | 85+3x-1+36=180 | | (6t-7t2)+11(7t+5)=t | | 16g+4-14g-7=g | | x=2x+2*5x/7 | | 21,000=x+1,000-36,000+39,000-4,000 | | 1=5=2u | | 1x×2x×3x=600 |

Equations solver categories