If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+1)-9x=-(x-10)+(2x+2)
We move all terms to the left:
2x(x+1)-9x-(-(x-10)+(2x+2))=0
We add all the numbers together, and all the variables
-9x+2x(x+1)-(-(x-10)+(2x+2))=0
We multiply parentheses
2x^2-9x+2x-(-(x-10)+(2x+2))=0
We calculate terms in parentheses: -(-(x-10)+(2x+2)), so:We add all the numbers together, and all the variables
-(x-10)+(2x+2)
We get rid of parentheses
-x+2x+10+2
We add all the numbers together, and all the variables
x+12
Back to the equation:
-(x+12)
2x^2-7x-(x+12)=0
We get rid of parentheses
2x^2-7x-x-12=0
We add all the numbers together, and all the variables
2x^2-8x-12=0
a = 2; b = -8; c = -12;
Δ = b2-4ac
Δ = -82-4·2·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*2}=\frac{8-4\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*2}=\frac{8+4\sqrt{10}}{4} $
| 6.8(x-4.75)=27.2 | | -6=-7+k/16 | | x=4612 | | 3v-8=6+2v-v | | -9(-1=b)=108 | | 1+8b=9b+10 | | 9x-6-9x=-6 | | 6(3x)=4(x+2) | | -x+3+x=-5 | | 3x+19=34x | | -6-8g=-7g | | -134=-7x-8 | | 1/6+1/2y=2/3 | | 1x(6x-9)=6x+5 | | -4c+4=-5c | | 1/5a-1/3=1/5 | | 3/5x+1=11/5 | | 3x+19=36x | | 7(x+4=9(x-2) | | 6(-m-5)=-34-6m | | 2x-9=9x-2 | | -42+20=-2+13x | | 20z+-11z=-18 | | -13=8-8x-7 | | -6-6(8x-3)=-48x+12 | | 1/3x+3/5=8/5 | | 0.25x-13=18 | | 3x+6=2x=2x-5 | | 4x-3(x-2)=9x+19-7x | | 4s=9-5s | | 0.25x+18=18 | | 8+4=4x+7 |