2x(x+1)+8x=(x+3)(x+5)

Simple and best practice solution for 2x(x+1)+8x=(x+3)(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+1)+8x=(x+3)(x+5) equation:



2x(x+1)+8x=(x+3)(x+5)
We move all terms to the left:
2x(x+1)+8x-((x+3)(x+5))=0
We add all the numbers together, and all the variables
8x+2x(x+1)-((x+3)(x+5))=0
We multiply parentheses
2x^2+8x+2x-((x+3)(x+5))=0
We multiply parentheses ..
2x^2-((+x^2+5x+3x+15))+8x+2x=0
We calculate terms in parentheses: -((+x^2+5x+3x+15)), so:
(+x^2+5x+3x+15)
We get rid of parentheses
x^2+5x+3x+15
We add all the numbers together, and all the variables
x^2+8x+15
Back to the equation:
-(x^2+8x+15)
We add all the numbers together, and all the variables
2x^2+10x-(x^2+8x+15)=0
We get rid of parentheses
2x^2-x^2+10x-8x-15=0
We add all the numbers together, and all the variables
x^2+2x-15=0
a = 1; b = 2; c = -15;
Δ = b2-4ac
Δ = 22-4·1·(-15)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 2(4y-3)=6y+3+2y | | 27x=4/9 | | -28=7(u-9) | | 2(4y-3)=6y+3=2y | | 7h2+41h–6=0 | | 2e/3+1=e+2 | | -(4y+1)-(-3y-6)=3 | | 34=5y-1 | | 4+12r=122 | | -2=-w+104 | | =34−5y-1 | | 2604=42(p+25) | | 8(x–2)=72 | | (2a=7)2 | | 16+c=13 | | 9p+16=10p | | 3^4^x^-9=1/243 | | 12/x=48 | | 2x+10+2x-20+x=540 | | (9y+42)/4=48 | | -5=z–84 | | -50=9r+13 | | 3x-7+2x+6+2x+6=180 | | 12a-6a+3a+2=11 | | -12x-13=-49 | | 1=9a–17 | | p-24=7p | | -10s+14s=12 | | 5=x/3+2 | | 2+4x=-x+12 | | X+34+x=180 | | 3-x=2x-7 |

Equations solver categories