2x(9x-9)-63=4x(3x-42)+193

Simple and best practice solution for 2x(9x-9)-63=4x(3x-42)+193 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(9x-9)-63=4x(3x-42)+193 equation:



2x(9x-9)-63=4x(3x-42)+193
We move all terms to the left:
2x(9x-9)-63-(4x(3x-42)+193)=0
We multiply parentheses
18x^2-18x-(4x(3x-42)+193)-63=0
We calculate terms in parentheses: -(4x(3x-42)+193), so:
4x(3x-42)+193
We multiply parentheses
12x^2-168x+193
Back to the equation:
-(12x^2-168x+193)
We get rid of parentheses
18x^2-12x^2-18x+168x-193-63=0
We add all the numbers together, and all the variables
6x^2+150x-256=0
a = 6; b = 150; c = -256;
Δ = b2-4ac
Δ = 1502-4·6·(-256)
Δ = 28644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28644}=\sqrt{4*7161}=\sqrt{4}*\sqrt{7161}=2\sqrt{7161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{7161}}{2*6}=\frac{-150-2\sqrt{7161}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{7161}}{2*6}=\frac{-150+2\sqrt{7161}}{12} $

See similar equations:

| 7a=112 | | n-3=35 | | (x+14)/6=3 | | d+7=20 | | 34=2(y+5)-5y | | 5x+-5=12 | | 8x+5/8=9x+1/8 | | (x-45)/45=0.2 | | (x-45)/45=20 | | X+5/3-x=-15x/10 | | (3/5)^2x=27/125 | | 176-32x=0 | | (X+5)/3-x=(-15x)/10 | | -3/7=-5/8-x | | (X+5)/3)-x=(-15x)/10) | | c2=125 | | 3(r-4)=-4+3r | | -3(3x3x-5)=6x | | 2/6=n/23 | | d+4=26 | | 5q=70 | | 18=h−3 | | 0.2m+0.66-2=m-0.4 | | 29+5y-9=16y-12-3y | | 20x-3/15=8 | | -6(3x+-1)=-9-3x | | 5a-4=2a=2 | | X^3+x^2=49x-49 | | 5m+4=24,4 | | 10x+6=-94 | | -4y+12=4(2y+5) | | X-(x+1)=56 |

Equations solver categories