2x(9x+6)=3(x-2)+4(2-3x)+1

Simple and best practice solution for 2x(9x+6)=3(x-2)+4(2-3x)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(9x+6)=3(x-2)+4(2-3x)+1 equation:



2x(9x+6)=3(x-2)+4(2-3x)+1
We move all terms to the left:
2x(9x+6)-(3(x-2)+4(2-3x)+1)=0
We add all the numbers together, and all the variables
2x(9x+6)-(3(x-2)+4(-3x+2)+1)=0
We multiply parentheses
18x^2+12x-(3(x-2)+4(-3x+2)+1)=0
We calculate terms in parentheses: -(3(x-2)+4(-3x+2)+1), so:
3(x-2)+4(-3x+2)+1
We multiply parentheses
3x-12x-6+8+1
We add all the numbers together, and all the variables
-9x+3
Back to the equation:
-(-9x+3)
We get rid of parentheses
18x^2+12x+9x-3=0
We add all the numbers together, and all the variables
18x^2+21x-3=0
a = 18; b = 21; c = -3;
Δ = b2-4ac
Δ = 212-4·18·(-3)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{73}}{2*18}=\frac{-21-3\sqrt{73}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{73}}{2*18}=\frac{-21+3\sqrt{73}}{36} $

See similar equations:

| 8k−8=11.8 | | x2-6x=-13 | | -4e-9=19-4e | | P(×)=x3-7x+5 | | 18+4x=-8 | | 4(x-5)^2=25 | | 8/9=x/15 | | 6(x+3)-2x=38 | | y-5=3.4 | | 6+n=80+12n/4 | | 7x-6=-8x-3 | | 30+(x-5)=2x | | -10=-a | | Y=2x+3/2=0 | | 5t+26=18t | | 8c=184 | | 9m=216 | | x​2​​+2x+46=0 | | b+3/2=7/2 | | 3^x-1=1/27 | | 2x+250-5x=160 | | S=0.2w+50 | | 1/2(6x+14)=20 | | 5b-2(7-2b)=4 | | -9b+3=84 | | -x/7+5=3 | | S-11=3s+39 | | 4x+1/7=-83/7 | | 7x²+2407x-45594=0 | | -4x+3x-1=-(x+3) | | 7-b=-2 | | 3x(64+2)=192+6 |

Equations solver categories