2x(3x-8)=3(4-x)+6x

Simple and best practice solution for 2x(3x-8)=3(4-x)+6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3x-8)=3(4-x)+6x equation:



2x(3x-8)=3(4-x)+6x
We move all terms to the left:
2x(3x-8)-(3(4-x)+6x)=0
We add all the numbers together, and all the variables
2x(3x-8)-(3(-1x+4)+6x)=0
We multiply parentheses
6x^2-16x-(3(-1x+4)+6x)=0
We calculate terms in parentheses: -(3(-1x+4)+6x), so:
3(-1x+4)+6x
We add all the numbers together, and all the variables
6x+3(-1x+4)
We multiply parentheses
6x-3x+12
We add all the numbers together, and all the variables
3x+12
Back to the equation:
-(3x+12)
We get rid of parentheses
6x^2-16x-3x-12=0
We add all the numbers together, and all the variables
6x^2-19x-12=0
a = 6; b = -19; c = -12;
Δ = b2-4ac
Δ = -192-4·6·(-12)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{649}}{2*6}=\frac{19-\sqrt{649}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{649}}{2*6}=\frac{19+\sqrt{649}}{12} $

See similar equations:

| 8x*20=12 | | 6x^2+11x+40=0 | | (2/3)(2-z)=3/4-5z/6 | | -72=6(-5+x) | | 7x-1/2=3/4 | | 5x-3(-2x+13)=16 | | 1−3(x−7)=6x+4 | | g4g4=2122⁤12 | | ∣x∣−14=6 | | -7v=-112 | | |3p-8|-10=-3 | | 31.20+0.12=28.62+0.08x | | 80=15x+30 | | -16=7u-2 | | 40=30x+0.50 | | 1.5xY=3 | | 3=3(u-1) | | 5a+12a-12a-32=4+13a | | 8-(3x-2)^2=-2 | | 2x10=100 | | -2x-3x+1=-3 | | b²=28 | | x+919=1800 | | 5.4-x=11.7 | | g=2(5)^2-1 | | 2|x-1|=0 | | |4x-5|=|3x+1| | | −2(x+2)=8−x | | 4m^2-64=N | | 2+0.75x=x-0.75 | | 8.5-1.4x=17.3 | | 4m+8=-13+3m |

Equations solver categories