2x(3x-7)-5=(4x+5)

Simple and best practice solution for 2x(3x-7)-5=(4x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3x-7)-5=(4x+5) equation:



2x(3x-7)-5=(4x+5)
We move all terms to the left:
2x(3x-7)-5-((4x+5))=0
We multiply parentheses
6x^2-14x-((4x+5))-5=0
We calculate terms in parentheses: -((4x+5)), so:
(4x+5)
We get rid of parentheses
4x+5
Back to the equation:
-(4x+5)
We get rid of parentheses
6x^2-14x-4x-5-5=0
We add all the numbers together, and all the variables
6x^2-18x-10=0
a = 6; b = -18; c = -10;
Δ = b2-4ac
Δ = -182-4·6·(-10)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{141}}{2*6}=\frac{18-2\sqrt{141}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{141}}{2*6}=\frac{18+2\sqrt{141}}{12} $

See similar equations:

| 3/8x=510 | | 6x-7=x3+11 | | n2-6n-16= | | 120x+360=720 | | 144y^2-7=15 | | 4(r+0.6)=10 | | 25+0.45=c | | 24+8x=8(5x+8)+8 | | 3=x+22/6 | | 10x-30+10x-19=69 | | -2(-7n-80=-39+3n | | 6x—2=2x+30 | | 15/x=30/100 | | 2x2+12=10x | | 2(v-8)-2=-2(-7v+2)-2v | | 240/600=x/100 | | 6.4=0.8j | | -5v+41=-3(v-9) | | 50000+.05x=400000 | | -2+6(x-1)=-11+5x | | -6^x-2=1/1296 | | 0=0.3125x^2-2.5x+0 | | 2(x+3)=-2x-2 | | 0=0.3125x^2-2.5x | | 5p-7=-13+8p | | 3u-4^4-8u-1^7=-4 | | a-2=12+3a-2-5a | | 0=5x(x-8) | | -2+3n=n+8 | | 7n+4n=5+6n | | 4^x+3=4 | | 9x/5(4-11=4x+8 |

Equations solver categories