If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(3.25x+1)=65
We move all terms to the left:
2x(3.25x+1)-(65)=0
We multiply parentheses
6x^2+2x-65=0
a = 6; b = 2; c = -65;
Δ = b2-4ac
Δ = 22-4·6·(-65)
Δ = 1564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1564}=\sqrt{4*391}=\sqrt{4}*\sqrt{391}=2\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{391}}{2*6}=\frac{-2-2\sqrt{391}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{391}}{2*6}=\frac{-2+2\sqrt{391}}{12} $
| y=4=-36 | | 1/3(x-6)+7=0 | | 20x-(9x-2)=24 | | x-9=1÷4x+3 | | 2(x+70)+3x=705 | | (x-2)-3=2 | | 200=-30,23x+378,11 | | 26x-9-18x+2=22x-5-14x+11 | | 8n^2-36n=140 | | 11+6.1N=5+6.4n | | 5(7f+8)=-33-4f | | 153-x=201 | | 8-4w=-12 | | 19-u=190 | | 7x-4=3x+31 | | 115-0.50x=95 | | 3x+22=6x+39 | | 2/3z-z=z | | 115-2.60x=95-2x | | 9-2x=4x3x | | X-x/2+36=9x+7/2 | | 12-x=-4-(x+2) | | 6-(5-x)=8+4x | | |3y+7|=12 | | 0.4x+0.5=0.9x-3.5 | | 3z^-11z-4=0 | | 9-3x=-7-x | | (5x+2)(25x-8)=9 | | 7x+14=2+2x | | 5x-10-10=15-10 | | 2x2+7x–11=0 | | -21=u/3+2 |