2x(3-x)-7x(3x+2)+4(2x+1)=0

Simple and best practice solution for 2x(3-x)-7x(3x+2)+4(2x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3-x)-7x(3x+2)+4(2x+1)=0 equation:



2x(3-x)-7x(3x+2)+4(2x+1)=0
We add all the numbers together, and all the variables
2x(-1x+3)-7x(3x+2)+4(2x+1)=0
We multiply parentheses
-2x^2-21x^2+6x-14x+8x+4=0
We add all the numbers together, and all the variables
-23x^2+4=0
a = -23; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-23)·4
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*-23}=\frac{0-4\sqrt{23}}{-46} =-\frac{4\sqrt{23}}{-46} =-\frac{2\sqrt{23}}{-23} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*-23}=\frac{0+4\sqrt{23}}{-46} =\frac{4\sqrt{23}}{-46} =\frac{2\sqrt{23}}{-23} $

See similar equations:

| 4.95(x+0.8)=67.32 | | -12v+20=-16v | | 18p-17p=6 | | 18+5x+36+9x=180 | | 9(9+21x)=10(10+17x) | | -5=3(p+6) | | n/10+7=7 | | -13d+14=-4d-13 | | 3x+25=4x-19 | | -5=3(p+6)5 | | 1.25+.75m=10.25 | | 28a/2+14*7a=10a-7 | | -10-2f-8=f+6 | | 2÷3+3k=71÷12 | | 500-30x=150x+20x | | 13-3x+23-5x+4=0 | | 3-5w=-9-8w | | 189x=9+170x | | 2j−14=2 | | 7=1+3j | | x^2=-15x-33 | | 1.5x+3(2.4-1x)=37.5+x | | .68X=153-x | | 7-2k+1=0 | | -t+114=-4 | | -1=x-3/40 | | (10x-2)+(5x+35)+67=180 | | -5 = n3− 9 | | 7p+4=-7p+4 | | -4(x–8)=36 | | 1/2z-4=5z-31 | | ∠1=5y-10 |

Equations solver categories