2x(2x-3)=10(x+4)

Simple and best practice solution for 2x(2x-3)=10(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x-3)=10(x+4) equation:



2x(2x-3)=10(x+4)
We move all terms to the left:
2x(2x-3)-(10(x+4))=0
We multiply parentheses
4x^2-6x-(10(x+4))=0
We calculate terms in parentheses: -(10(x+4)), so:
10(x+4)
We multiply parentheses
10x+40
Back to the equation:
-(10x+40)
We get rid of parentheses
4x^2-6x-10x-40=0
We add all the numbers together, and all the variables
4x^2-16x-40=0
a = 4; b = -16; c = -40;
Δ = b2-4ac
Δ = -162-4·4·(-40)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{14}}{2*4}=\frac{16-8\sqrt{14}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{14}}{2*4}=\frac{16+8\sqrt{14}}{8} $

See similar equations:

| 5^2=(x^2-11) | | 120*n=24 | | 1/4b=14 | | x+13+2x+7+4x-1=180 | | -4=x÷12 | | 12.50x=100 | | 19+1.50=14+2.75h | | 2x-4(2x-3)=6(x+4) | | 15.217-j=4.11= | | 5 | | x-7/3=21 | | 1/2x=7/28 | | 15.217-j= | | 3(3g+5g)-9=18g+5(-g-4) | | (2z+13=) | | 9/4x=8.5 | | 85/100=6/x | | 15x-22.50=60 | | 15x-22.50=6- | | 22-w=w-4 | | 2.5t=12/25. | | 5h-12=9+2h | | 2x+3x+4=56 | | 4.5-0.3f=0.6f | | 2j+48=38 | | 59/8-r=-46/8 | | 90+(5x+9)+(4x)=180 | | h^2-4h=96 | | 95=14+9w | | 3(6 | | -1/2*12v-20+4=-12-8v | | 5y+40+1+1=0 |

Equations solver categories