2x(-5+8x)+6=40-8x

Simple and best practice solution for 2x(-5+8x)+6=40-8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(-5+8x)+6=40-8x equation:



2x(-5+8x)+6=40-8x
We move all terms to the left:
2x(-5+8x)+6-(40-8x)=0
We add all the numbers together, and all the variables
2x(8x-5)-(-8x+40)+6=0
We multiply parentheses
16x^2-10x-(-8x+40)+6=0
We get rid of parentheses
16x^2-10x+8x-40+6=0
We add all the numbers together, and all the variables
16x^2-2x-34=0
a = 16; b = -2; c = -34;
Δ = b2-4ac
Δ = -22-4·16·(-34)
Δ = 2180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2180}=\sqrt{4*545}=\sqrt{4}*\sqrt{545}=2\sqrt{545}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{545}}{2*16}=\frac{2-2\sqrt{545}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{545}}{2*16}=\frac{2+2\sqrt{545}}{32} $

See similar equations:

| 8(2n+3)=16n+ | | 3/1x+-9=6 | | 5x/x+1=15/18 | | -33+4y=13y+27 | | 45=-u/8 | | 10y-12=53 | | a-24=12 | | 14j-12j=2 | | 108-a=600 | | 6x+20+8x=180 | | 17x-2=63 | | 12q-4q-7q=6 | | 2(4x-1)=-2+6x | | 2/6=7/3a | | 8x−2(x+6)=−24 | | 75=5g | | 6x-11-5x=3 | | (5x+40)=2x | | 60+5x+1=90 | | 2y^2+32y=0 | | 10=2(z+3) | | (3x50)+(3x6)=168 | | x=5=3x-2 | | (x+6)/10=-2 | | 4m−16=6m−28 | | 8=7x-20 | | -1.2k=4.5 | | -5/4x+21=-24 | | k=10-7.5 | | 117+9x=360 | | 3+12(3p+2)=9(9-3) | | x+38=-4 |

Equations solver categories