2x(-5+6x)=10x(8-5x)=0

Simple and best practice solution for 2x(-5+6x)=10x(8-5x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(-5+6x)=10x(8-5x)=0 equation:



2x(-5+6x)=10x(8-5x)=0
We move all terms to the left:
2x(-5+6x)-(10x(8-5x))=0
We add all the numbers together, and all the variables
2x(6x-5)-(10x(-5x+8))=0
We multiply parentheses
12x^2-10x-(10x(-5x+8))=0
We calculate terms in parentheses: -(10x(-5x+8)), so:
10x(-5x+8)
We multiply parentheses
-50x^2+80x
Back to the equation:
-(-50x^2+80x)
We get rid of parentheses
12x^2+50x^2-80x-10x=0
We add all the numbers together, and all the variables
62x^2-90x=0
a = 62; b = -90; c = 0;
Δ = b2-4ac
Δ = -902-4·62·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8100}=90$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-90}{2*62}=\frac{0}{124} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+90}{2*62}=\frac{180}{124} =1+14/31 $

See similar equations:

| |7-3x|=4x+5 | | 6(3e-3)=5(4e+5) | | 5(d+2)=3(2d-7) | | 11c+10=3(2c+4) | | n-9/10=5 | | 12x+28=4x+196 | | 6(b-2)=4b+7 | | -5x+-3=22 | | x=12+28 | | 5(3w+5)/4=9 | | 2-5x=50-x | | 2x+10=35+x | | 48-4x=-13-9x | | 9y+5-6y=13-8y | | -16+2x=24-5x | | x=(-2(7))/(-10(-8)-6(-8)^2-8) | | -2(7))/(-10(-8)-6(-8)^2-8=x | | 5x+6=14-8x | | 0=n2+n-1300 | | 1/3-6/7x=1/3 | | (x-7)+(2x-7)=2x | | 2-3x^2-5x=0 | | 2x-4x=12x-64 | | 2x+4=12x-64 | | 2x-1=x=5 | | 7x-19=2+3x-5 | | 4,3x+15=5,7x+36 | | 6z+9-2z=21-5z+33 | | x+x-6+x+x-6=96 | | 10+7x=-27+x | | 9-5x=23-12x | | 2y+2y+4y=10y |

Equations solver categories