If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-32=0
a = 2; b = 14; c = -32;
Δ = b2-4ac
Δ = 142-4·2·(-32)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{113}}{2*2}=\frac{-14-2\sqrt{113}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{113}}{2*2}=\frac{-14+2\sqrt{113}}{4} $
| 8p+5=299 | | (1/4)(y+9)-5=12 | | -2+5a=2 | | -2+a5=2 | | 1+6x=-9 | | 8+6a=3 | | 16y=17y | | 8+a6=3 | | (x-2)2+4=53 | | 4x-6=8x-26 | | 10x+7=3(x+14) | | a-2-7=3 | | 3z/10+9=5 | | 5a-8=28 | | G(x)=-9 | | 5t–7=38t= | | (20(x-5))/50x1=6 | | 5a-8=23 | | (20x(x-5))/50x1=1 | | 6x-10=100 | | 2(x+6)=3(x-4)-5 | | 64(2n)=16 | | 642n=16 | | 90=16+25-2.4.5.x | | 6y-12=-6 | | 1.8/x=108 | | 21/a=7.5 | | 2/3x-12=-2 | | 8m=-8m | | 14x+53=6x+85 | | 2r-6=20 | | -16t^2+22t-5=0 |