If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w(2w+16)=256
We move all terms to the left:
2w(2w+16)-(256)=0
We multiply parentheses
4w^2+32w-256=0
a = 4; b = 32; c = -256;
Δ = b2-4ac
Δ = 322-4·4·(-256)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{5}}{2*4}=\frac{-32-32\sqrt{5}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{5}}{2*4}=\frac{-32+32\sqrt{5}}{8} $
| 1/2(m)-3=4 | | 3.x-15=-27 | | 2=12/a | | 7(8-4n)-3n=-192 | | 2.5x+75=5x | | 5=9/x | | 3*3x-x=x-5*2x | | 5y-10=25-2y | | 4x+7=6x11 | | x*5=(x+40)*4 | | 3*3x-x=x-5*2 | | ?x?=49 | | 4(m+3)=-8 | | 9y+3+2y+7=15y-14 | | -10=-2.5x | | 168=4(-6-8x) | | 40x-50=30x-10 | | 8x+9-2x=18+5x+11 | | .3x–10=23 | | 8y+8/8=0 | | 96=-4(2r-5) | | m9=40, | | -12=-9+m | | 3/4x+22=-44 | | 60/105=7/x | | 3(x-2)+7=34 | | 8x+36=12 | | 5-(-x)=6 | | -1=p+2 | | 3(2x-5)-4x7x+10=x-5 | | -24+6x=-0 | | Z=74z-6 |