If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w(2)+w2=96
We move all terms to the left:
2w(2)+w2-(96)=0
We add all the numbers together, and all the variables
3w^2-96=0
a = 3; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·3·(-96)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*3}=\frac{0-24\sqrt{2}}{6} =-\frac{24\sqrt{2}}{6} =-4\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*3}=\frac{0+24\sqrt{2}}{6} =\frac{24\sqrt{2}}{6} =4\sqrt{2} $
| -1/3*p+1=10 | | -29=5(y-8)+6y | | 10x+24=8x+50 | | -1/3^p+1=10 | | 8=6(w+3)+4w | | 10x+24=8x+50 | | (x=1)/2+4=17 | | (4w)4=96 | | -5v+7(v-5)=-15 | | R(p)=-59p^2+65p | | 3w-35=18 | | 1/2x-18=13 | | 17-2x1=5 | | 9/11=3x | | (2w)4+w2=96 | | 12x-4+2x=39 | | ((2x+3)/5)-(7-2x)/3)=7/2 | | -7x+20=23x+80 | | -6w/7=-36 | | -7/2(2s+3)/5-(7-2s)/3=0 | | 376.8=2(3.14)r10 | | -3+5(1-n)=4-4n | | 7(b+6)+5b=114 | | (4x+1)=2 | | 2(9y-3)=18y-6 | | 4(x-3)=2x+16 | | -(4/6)=(2x/3) | | (9x+12)+3×=180 | | 2x+6-1=5x+7-3x | | ((2s+3)/5)-(7-2s)/3)=7/2 | | v10.44−2.9=−4.422 | | 3x+16=-2x-9 |