If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+9u=0
a = 2; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·2·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*2}=\frac{-18}{4} =-4+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*2}=\frac{0}{4} =0 $
| 2x2–3x+7=0 | | x-20=2x+4 | | 11x+11=0= | | 7t2=-3t | | 4x^{3}+2x^{2}=0 | | 10.3=-12.1+7x | | 8x2-8=0 | | 5x+21=21= | | (4x-3)^2-8x=6 | | -6x2+10=0 | | -4=-4s2 | | x+7^2+1=12 | | 8x2–8=0 | | 5w2+6w-7=0 | | 3x+11=14= | | 21-x/6=9 | | 9x+20=100 | | 5w2+6w–7=0 | | x(2x-1)-5(2x-1)=0 | | 3(6-2x)+6=-3+(-3x)+21-(-3) | | 3-26x=18 | | 0y=2 | | x/5+12=28 | | 6s-38=88 | | 4×n=32 | | (4x+2)=(8+6x) | | 0.2/0.5=x/0.9 | | 3x+7x-8=4x+4 | | 0.5*8x^2-4x-5=0 | | 4u2=4u | | 0=-0.08x^2+8.2x | | x-2(x-6)=-1+12 |