If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| 15+v=22 | | 10c=40 | | 4-3x+5x+2=x | | 3*9x+1=4x+6 | | I/2-4=u/3 | | 123+x+69=180 | | 3x4=-2 | | x+80+25=180 | | 3(x+5)+9=3x+7 | | x+35+95=180 | | a÷3=2=14 | | -7/4=2.5t | | -14-7y=14 | | 8j/9=15/8 | | -7+3j=-19 | | x+140+45=180 | | A=x2−18x+80 | | A=x2−18x+80. | | x+150+90=180 | | Z^4=-16-16i | | x+123+69=180 | | x+115+50=180 | | x+82+42=180 | | 72=12(w) | | x+58+28=180 | | -8x+4(8x-4)=4x+24 | | 28+58+x=180 | | 5/4+1/(t-2)=1/(t+2) | | 110+80+x=180 | | 14k−2=34k+4 | | 70+24+x=180 | | -5(5y-5)-y=-3(y-4) |