If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+15t+7=0
a = 2; b = 15; c = +7;
Δ = b2-4ac
Δ = 152-4·2·7
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-13}{2*2}=\frac{-28}{4} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+13}{2*2}=\frac{-2}{4} =-1/2 $
| 3x^2-3+5=0 | | 4(3q+6)=3(3q+2)+2q | | 1x+2=6x+7 | | 77+4x=14x+21 | | 3/x-2+1/x=6x+4/x^2-2x | | m/8=(m+7)/10 | | 8v-3(-7v+7)=39-v | | 1x+2=7x+6 | | X+5+2x-3=20 | | 5.2=5.8-0.3x | | 0x+1=7x+6 | | -8-5(8+7x)=20-4 | | 2a+1/3=3a-12/4 | | 2x-16+9=x+3 | | 2c−7=1 | | 10+5x=5(x+2) | | 12+3x+3=-3+9x | | 3(5t+2)=2 | | 8(7+2x)-2x=112 | | 7y+3+2y+3=13y-14 | | 3x-28-3x-30+x=33 | | x+86+74+114=360 | | 6+x+12=2x+28 | | 2(2x+7)=4(x+3) | | 21z-6z=13 | | -8-5(8+7x)=20-1x | | 134=204-w | | 7x+28-6=2x+20+5x | | 8=-18+(3)/(8)(16-40n) | | 8(7+2x)=96 | | -18x=14x | | 14+11=5(2x-5) |