If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t(t+3)3=0
We multiply parentheses
6t^2+18t=0
a = 6; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·6·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*6}=\frac{-36}{12} =-3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*6}=\frac{0}{12} =0 $
| 12g−10g−2g+2g=8 | | 9u-6u+4u-6u=16 | | 4/x+3=x | | -4t+10=-3t | | 3g-2-g+2g-g=10 | | 2-16t=6(-3+2t) | | 15a-15a+a=12 | | 8=b×8 | | 3j+3j+j-5j+4j=12 | | 209=-u+131 | | 19a-3a-12a+a-4a=17 | | 2a-3a=19 | | 7.7x-13.4=25.1 | | 1/2(x+27)=5x | | -x+184=93 | | 4s-s+s-3s=11 | | z+4z-3z=16 | | -x+6.5=x+0.5 | | 9d+3d+d-5d-4d=20 | | 5x=1/2(x+27) | | 7+2x/3=9 | | 43=242-x | | 5v+v+v-2v-3v=18 | | 9s-40=42 | | n-(-7)=9 | | 5x=1/2(x+7+20) | | -2w=10-w | | 66-w=255 | | 18s-17s+6s=7 | | 16m-5m+4m-8m=7 | | d/28=-15 | | 0.5(x+27)=5x |