If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+6r=3
We move all terms to the left:
2r^2+6r-(3)=0
a = 2; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·2·(-3)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*2}=\frac{-6-2\sqrt{15}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*2}=\frac{-6+2\sqrt{15}}{4} $
| 3(x-4)+10=1 | | 4n^2-4=-5 | | 0=16t2+30t+2 | | n/(-4)=-13 | | 3x−4(x+1)=2 | | 54+9x=65+2x | | 50+32t=(1/2)*3.5t^2 | | 27c-9=20c+5 | | Y-7=4x+38x | | 7/3x=x-3/2 | | 41+6x=2x+71 | | 36x-12=42x-42 | | D=1.6t+5. | | 80–x+90–2x=180 | | 15x+25=14x+28 | | 23^2+19^2=x | | 23^2+19^2=x^2 | | a^2+24^2=25^2 | | 32=16^-x+5 | | 5(x-7)=3-7x | | (x+28)+(3x)=180 | | (15/40)=(x/380) | | 15/40=x/380 | | 15=3a=6 | | 5(x+7)=3-7x | | 56+x=28 | | 14x-18=36-11x | | 2(1.2x+4)=4(0.6x+1)1 | | 3a+7=7a−3 | | Y+10=2(x+10) | | 6(x+3)+5=-1 | | 3c+1=6 |