If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r+49=-8(-r-5)/2r+49=-8(-r-5)
We move all terms to the left:
2r+49-(-8(-r-5)/2r+49)=0
Domain of the equation: 2r+49)!=0We add all the numbers together, and all the variables
r∈R
2r-(-8(-1r-5)/2r+49)+49=0
We multiply all the terms by the denominator
2r*2r-8(-1r-5)+49*2r+49)-(+49)=0
We add all the numbers together, and all the variables
2r*2r-8(-1r-5)+49*2r+49)-49=0
We add all the numbers together, and all the variables
2r*2r-8(-1r-5)+49*2r=0
We multiply parentheses
2r*2r+8r+49*2r+40=0
Wy multiply elements
4r^2+8r+98r+40=0
We add all the numbers together, and all the variables
4r^2+106r+40=0
a = 4; b = 106; c = +40;
Δ = b2-4ac
Δ = 1062-4·4·40
Δ = 10596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10596}=\sqrt{4*2649}=\sqrt{4}*\sqrt{2649}=2\sqrt{2649}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(106)-2\sqrt{2649}}{2*4}=\frac{-106-2\sqrt{2649}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(106)+2\sqrt{2649}}{2*4}=\frac{-106+2\sqrt{2649}}{8} $
| 6=t-49 | | -3(m+6)=8(m-5) | | 7x+6+82+8x+2=180 | | y=19(10)-64 | | 84=6(q+4) | | =4a-82a | | -7y+3-6=14 | | 8y=-116 | | 12g-3=24g-27 | | 10s-19=1 | | 6+2x=29 | | 3/4=46.5c | | 6^(5x)-5=17 | | 18x-5+5=180 | | a-21/3=45/6 | | 2x-3(5x+6)=34 | | 4y+4y=3823382347462373732 | | 3/4=46.50c | | 4x=47.6 | | -27=9(g+11) | | 17x-5+5=180 | | 8n-36=(2+4n) | | Y=64(0.97)^x | | 12-4h=44 | | 3(x+8)^2−54=0 | | 15x²-120x+16=0 | | –5u=–4u−6 | | 3(x+8)2−54=0 | | 29=5v-21 | | 8m−3=5m+27 | | x*(x+8)=384 | | 3x3-3x2-60x=0 |