If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-19p+24=0
a = 2; b = -19; c = +24;
Δ = b2-4ac
Δ = -192-4·2·24
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-13}{2*2}=\frac{6}{4} =1+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+13}{2*2}=\frac{32}{4} =8 $
| r+540=-196 | | a+3a+a=4a-1 | | -4.3+5u=8.2 | | -12m^2-372=-12+14m-17m^2 | | 63=k*9 | | 63=k9 | | 3a+2=4a-1 | | 4x+149=x+361 | | 100x=1x | | 6x2=35 | | 12=6(y-4)+6y | | 9x^2=-6x+13 | | 3(x+4)-8x=32 | | X+150=2x+235 | | 9p^2-114=-11p | | 2(5x3-1)=8 | | 18x=23x-14 | | (x/8)+23-4=23 | | 9x+2=10x-1 | | 5x+9=5x+3x | | a3+1=-5 | | x+3x=77 | | x+4x=77 | | 11r^2+19=16r | | 3(7x+2)=6 | | 4=2.8x/0.4x^2+1.3 | | 18x-16=10x-4 | | 5x+12=9x-24 | | 7^x-49^x=-5 | | 3(x7+2)=6 | | x−20=4 | | u/5+14=15 |