If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+5p-12=0
a = 2; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·2·(-12)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*2}=\frac{-16}{4} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*2}=\frac{6}{4} =1+1/2 $
| 27=3y. | | -3/6m=-9/6 | | 36x³=121x | | 6−4 | | 8.5n−7.5n+7.8=3.5 | | 1/3(2b+9=2/3(b+9/2 | | 5(-7x+9=-270 | | x(2x+9)=455 | | 5x3=195 | | 1/2(6t-4=3t-2 | | 0.5(4x+5)=9x-12(x-1) | | b/8-3=9 | | (p+10.4)/4=3.5 | | 18-50=w | | p÷10-67=32 | | 23-7x=3x+19 | | (c-11.8)/2=2.4 | | u/6=3/8 | | 5m+8-2m=100 | | 24/1*5/12=v | | c-11.8/2=2.4 | | 3(v-5)-6.7=2.3 | | 99=-w+161 | | -a/24=5/12 | | -6=-2/5y | | 55=33^x | | h(5)=1/2(5)-4 | | -7/8y=14 | | x^2+2.2x-880=0 | | j+10/3=-1 | | |13+7x|=0 | | (j+10)/3=-1 |