If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+5p+3=0
a = 2; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·2·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*2}=\frac{-6}{4} =-1+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*2}=\frac{-4}{4} =-1 $
| 9x^2=-225 | | 5x+10=3x+13 | | 15x+18=x+4 | | 17u-12u-u=12 | | -12x-(-16)=68 | | -51+8x=5 | | -16=-2k-6k | | x+x-x/2+x+50=1250 | | 2/5n+7=13 | | 658=8j^2 | | x^2+10+18=0 | | -16=—2k-6k | | -2n^2+15n-7=0 | | −3x+12=−8+2x | | 11b+4b-11b-2b=18 | | 4x(x-3)(2x-5)(3x-4)(5-2x)=0 | | m2-6m+9=0 | | 15+10x=25 | | 9a+a+4a-11a-2a=18 | | -2=p+5+6p | | 3/8x-6=10 | | 4.3x-14.6=2.6 | | -20=-6x+x | | 48=-4q | | 8/7x=11/7 | | 31-3k=21 | | 8x+-51=5 | | 16z-14z=12 | | 3z/10+4=-7 | | .375x+2=11 | | 2x+28=12x+28 | | 0=r-6-7r |