2p-3(4-2p)=2(p-6)-16

Simple and best practice solution for 2p-3(4-2p)=2(p-6)-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2p-3(4-2p)=2(p-6)-16 equation:


Simplifying
2p + -3(4 + -2p) = 2(p + -6) + -16
2p + (4 * -3 + -2p * -3) = 2(p + -6) + -16
2p + (-12 + 6p) = 2(p + -6) + -16

Reorder the terms:
-12 + 2p + 6p = 2(p + -6) + -16

Combine like terms: 2p + 6p = 8p
-12 + 8p = 2(p + -6) + -16

Reorder the terms:
-12 + 8p = 2(-6 + p) + -16
-12 + 8p = (-6 * 2 + p * 2) + -16
-12 + 8p = (-12 + 2p) + -16

Reorder the terms:
-12 + 8p = -12 + -16 + 2p

Combine like terms: -12 + -16 = -28
-12 + 8p = -28 + 2p

Solving
-12 + 8p = -28 + 2p

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '-2p' to each side of the equation.
-12 + 8p + -2p = -28 + 2p + -2p

Combine like terms: 8p + -2p = 6p
-12 + 6p = -28 + 2p + -2p

Combine like terms: 2p + -2p = 0
-12 + 6p = -28 + 0
-12 + 6p = -28

Add '12' to each side of the equation.
-12 + 12 + 6p = -28 + 12

Combine like terms: -12 + 12 = 0
0 + 6p = -28 + 12
6p = -28 + 12

Combine like terms: -28 + 12 = -16
6p = -16

Divide each side by '6'.
p = -2.666666667

Simplifying
p = -2.666666667

See similar equations:

| (X-58)+x=441 | | 5-3=5+(-3) | | 2(x-24)+4(x-4)=50 | | 24x+24=20x+16 | | -16t^2+64t+960h=0 | | f(X)=20+0.15 | | 0=x^3-6x^2+9x | | 3(x+2)=2w-1 | | x-26=-13 | | -3+5x+20=47 | | 2x-5+4-13=90 | | 4-5(6x+6)=-26+3x | | -5(-2x-4)+10=10 | | (x-8)2=3 | | 5k+11=25-2k | | -5-3n+5n=1 | | 16y^2-40xy+25x^2= | | 80+(5-a)=2a | | -4(x-8)=4x-8(x-4) | | 9-(-3+4)+5=15 | | y=7+2.250(x-3.500) | | 14x-(6x-7)=79 | | 5x+7y=-14fory | | 9-(3-4)+5=15 | | (x+8)-14=-15whatisx | | 3b^3+b^2-6b-2=0 | | x-1-v(x)=0 | | 9-3-4+5=15 | | 2+3t=14 | | -1+x-(2x-2)=3x-1-(-2x-1) | | 3x^2+xy+y^2=9 | | Y=(ax)2 |

Equations solver categories