2p+p=1/4*2p+150

Simple and best practice solution for 2p+p=1/4*2p+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2p+p=1/4*2p+150 equation:



2p+p=1/4*2p+150
We move all terms to the left:
2p+p-(1/4*2p+150)=0
Domain of the equation: 4*2p+150)!=0
p∈R
We add all the numbers together, and all the variables
3p-(1/4*2p+150)=0
We get rid of parentheses
3p-1/4*2p-150=0
We multiply all the terms by the denominator
3p*4*2p-150*4*2p-1=0
Wy multiply elements
24p^2*2-1200p*2-1=0
Wy multiply elements
48p^2-2400p-1=0
a = 48; b = -2400; c = -1;
Δ = b2-4ac
Δ = -24002-4·48·(-1)
Δ = 5760192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760192}=\sqrt{64*90003}=\sqrt{64}*\sqrt{90003}=8\sqrt{90003}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2400)-8\sqrt{90003}}{2*48}=\frac{2400-8\sqrt{90003}}{96} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2400)+8\sqrt{90003}}{2*48}=\frac{2400+8\sqrt{90003}}{96} $

See similar equations:

| -3/4x+2/5x=7/20x-1/2 | | -16(x-30)²+300=0 | | 31=6n-17 | | 9x-9=2(2x+5) | | 114=6(4v-1) | | 10m2+5=8m | | 17=7n-8+4n | | -8-x=4x | | 3/7-1/2-4y=0 | | 36(3/4x−2)+72=−72+27x | | y-57=-2 | | 119=6(9v-1) | | 2/3+x=5/3 | | 9x+11x-7=5(4x+9) | | 0.85x=2.7 | | b+2=66 | | 5x-2+2+6=67 | | 2x-7-4x-21-x-3=180 | | x+6+8x=-21 | | 8y+14=6y+58 | | x+2/3=-1/9 | | 11a+72=8a+120 | | 5x=2x=27 | | 12x-5=48 | | 0=200+3/5x | | 12s-5=11 | | 6x-2-7x=-8 | | 3x+50=4x | | -200=3/5x | | 2x+5•2+2x•2=6x-10•3 | | x/11=3R4 | | −2/3x–21/4=274 |

Equations solver categories