If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+n-3=0
a = 2; b = 1; c = -3;
Δ = b2-4ac
Δ = 12-4·2·(-3)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*2}=\frac{-6}{4} =-1+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*2}=\frac{4}{4} =1 $
| 3(2−8n)=3n+63(2-8n)=3n+6 | | X=45+1/2x+72 | | 1.34x=4.02 | | 2v2-7v=0 | | -12(x=4)=240 | | x2+6x=31 | | m2-4m=21 | | 1/2+5*x=1/2-6x | | 5w^2-7w-4=0 | | 8−2v=4 | | 5y^2-y-2=0 | | b-6=-22 | | -29+10x=12x+41 | | 4w^2-2w+8=0 | | Y+4=-(x-5) | | 18=x-210 | | 12x^2-1x+4=0 | | 4(c-20)=8 | | 6u^2+8u+7=0 | | j+4/3=2 | | j/4+-1=-5 | | x+2x+5=x | | t-22=11 | | k2=4+3k | | 1=-i/3+5 | | m+19=21 | | r2+8r=-7 | | x9=9 | | -2=-7-5b | | 7x-3x=9+x | | k2-12k=-32 | | 8=4c+8 |