If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+3n-20=0
a = 2; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·2·(-20)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*2}=\frac{-16}{4} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*2}=\frac{10}{4} =2+1/2 $
| 4x-1/6=-5/11 | | (x+13)=60 | | F(4x)=4x^2+2x-3 | | 3y+9=19y | | 90=1/2(18)h | | 5=13n−21 | | 0=16x^2-1/9 | | 90^2=1/2(18)h | | 4(a-6)=8a-(4a24) | | 3x-3(x-8)=15+3x | | 43=8/c-5 | | 230=70+(20+7)w | | X+x-22=3 | | -3.5k+6=-8 | | 3x-3x-24=15+3x | | (3x-12)^2=18 | | 2.5x=2x+12 | | 3(x-8)-29=3x-53 | | 8y+5y=44 | | 36=8x-16 | | -7p+2+8p=5 | | 3(4w+9)/4=7 | | 2j+7=12 | | -5x+14=14-5x | | 1.88g-12=0.2 | | x-3=5(2x+1) | | -11-6x+x=4 | | x^-4=81 | | w/2+15=45 | | 5(9c+1)=0 | | 2/3(g-7)=3 | | 20-x.2=12 |