If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+2n=1800
We move all terms to the left:
2n^2+2n-(1800)=0
a = 2; b = 2; c = -1800;
Δ = b2-4ac
Δ = 22-4·2·(-1800)
Δ = 14404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14404}=\sqrt{4*3601}=\sqrt{4}*\sqrt{3601}=2\sqrt{3601}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3601}}{2*2}=\frac{-2-2\sqrt{3601}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3601}}{2*2}=\frac{-2+2\sqrt{3601}}{4} $
| -79x=-300 | | 5z-35=115 | | 3(m+3=27 | | 5z-35=65 | | w÷-5=-2 | | 250=π×16×h | | X³-12x²+36x-32=0 | | 0.5-5d=6 | | 5x+1-2x+6=7 | | 3x+×=84 | | 4^x-9.2^x+2^3=0 | | 2^(3n-1)=256 | | 7(n-1)=-2(3+n | | 0.1x+99=149.30 | | 99-0.1x=149.30 | | 13+40x=1+5x | | S=2(6x3+6x5+3x5) | | 6x-3=7x=2 | | 8(x+2)=14x+4-7x | | -5/7x-9/35x+1/5x=-54 | | −3.1x+7−7.4x=1.5x−6(x−32) | | b-66/7=3 | | k/3+14=18 | | -3-0.5x=0.3x+6.2 | | 8x+16-4x=60 | | -8=8x-6 | | 3=2v-3 | | -3.5=h-4.16 | | -2(x+6)+4(x+3)=5x–2(2x+2)+4 | | 5x+25-10x=-50 | | 8(x+16)=14x+4-7x | | 3(x-2)-3(x-2)=20 |