If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n+n2=10
We move all terms to the left:
2n+n2-(10)=0
We add all the numbers together, and all the variables
n^2+2n-10=0
a = 1; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·1·(-10)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{11}}{2*1}=\frac{-2-2\sqrt{11}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{11}}{2*1}=\frac{-2+2\sqrt{11}}{2} $
| 20=5(2p-1)+5(-6p-7) | | (5x-2)+(6x-10)=180 | | 63-2+18y=180 | | 3x+12+9×=72 | | |5x+3|=3x+25 | | 0.5d=-1.5d | | (8x-17)=83 | | 6(3n−7)−2=19 | | 3d=1d | | -2x+11+6x=x | | 0.5x+0.7=0.8x-0.8 | | (8x-17)=84 | | 24+60=15x+105 | | 12x+8°=3x-1° | | 0.5x=0.7=0.8x-0.8 | | 2(t+3)+1=9 | | 10x-9+19x-18+7x+1=90 | | (2x-5)+95=180° | | -11x-6=3x-6 | | 10x-9+19x-18+7x+1=180 | | 5x+22+8=180 | | 18-2(7x+3)=38 | | 3(y—1)+2(y+3)=13 | | 150-x=80 | | -18-3x=9 | | 2.7x+8.4=10.5x+47.4 | | 7x-9=2x+46 | | -7.5(x-3)=3.73 | | m−5=9 | | 7(4n+4)+-7(n+1)=-63 | | (4x^2)+(41)=81 | | 40c+26=180 |