2n(n+4)+18=n(n+5)+n(n+5)+n(n-2)-7

Simple and best practice solution for 2n(n+4)+18=n(n+5)+n(n+5)+n(n-2)-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2n(n+4)+18=n(n+5)+n(n+5)+n(n-2)-7 equation:



2n(n+4)+18=n(n+5)+n(n+5)+n(n-2)-7
We move all terms to the left:
2n(n+4)+18-(n(n+5)+n(n+5)+n(n-2)-7)=0
We multiply parentheses
2n^2+8n-(n(n+5)+n(n+5)+n(n-2)-7)+18=0
We calculate terms in parentheses: -(n(n+5)+n(n+5)+n(n-2)-7), so:
n(n+5)+n(n+5)+n(n-2)-7
We multiply parentheses
n^2+n^2+n^2+5n+5n-2n-7
We add all the numbers together, and all the variables
3n^2+8n-7
Back to the equation:
-(3n^2+8n-7)
We get rid of parentheses
2n^2-3n^2+8n-8n+7+18=0
We add all the numbers together, and all the variables
-1n^2+25=0
a = -1; b = 0; c = +25;
Δ = b2-4ac
Δ = 02-4·(-1)·25
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*-1}=\frac{-10}{-2} =+5 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*-1}=\frac{10}{-2} =-5 $

See similar equations:

| 2w/7=-6 | | 99=3w | | -16/7=-8x | | 3x-42=-32 | | 25=-5/8v | | 2x+3x+9=36x-6x | | 98+x=x+92 | | 27=-u/9 | | x+98=x+92 | | 45+22x+1=14x+12 | | -y/6=-57 | | 68/x=85/100 | | 6(2x/3-x/2)=12 | | 7x^2+3x+9)=(2x^+5x-2) | | 1/2a=5/8 | | 4^3x-5=8 | | -10x+20+-4x-8=180 | | 7(4w+1)/2=4 | | -2(x-8)=4x=-12 | | -4x-6=-3x-3 | | 6x-5=16x+55 | | 6x+6=-4x-2 | | -5x-5=-3+5 | | 5x+2(-1)=-37 | | -3x+20=10 | | -4(x-9)+2(x+6)=180 | | 7p2+8p=0 | | 5=0.6(w+0.4) | | 1/2(x-3/4)=1/8 | | -7x=3x+45 | | 0.375+x=0.875 | | 0.875+x=1 |

Equations solver categories