If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| 6x-4+2x+10=90 | | 0.22(x+8)=0.2x+6.4 | | 6x+5=7x-4=180 | | 2)x+4+6=14 | | -13=-9x+5 | | (13x-993)+(3x-185)=3x-129+4 | | -(n+2)=9(6-n) | | 3x-1+6x+1=180 | | p/9=-19/9 | | 4-c/3=10 | | 56=4n=4 | | 2.6(3)=x | | -1÷4x=7 | | 16x^2+15x-31=5+15x | | -22=7x-8 | | 12x+4(21)=152 | | 9(-3m+9)=81-27m | | 12x+4(13)=152 | | 12x+4(11)=152 | | 3(5x-2)-10x=6 | | 12x+411)=152 | | x+54+90=180 | | 6x+8x-36=3x+2x | | 50=10(-3+a) | | 12x+4(9)=152 | | 19x=134 | | 5+x+1=x | | 21+55+.5x=39+55+21 | | 3(-3x-7)=-102 | | 1.8(x)=2.6 | | -3=v/8 | | 7x-4x=12-3 |