If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+4m-16=0
a = 2; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·2·(-16)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*2}=\frac{-16}{4} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*2}=\frac{8}{4} =2 $
| 7/8d=5/8 | | 14+3x+6=18+3x | | 0.25(8x-4.28)=60 | | (x+12)+(x+24)=90 | | p-1=9.25 | | 332-q=126 | | 2/3z+1=18 | | 332−q=126332-q=126 | | 332−q=126 | | y-578=25 | | 39=120-9c | | h+11.3=−11.3h= | | 251=939-f | | (9x+48)+3x=180 | | 6y+4y+1/2=24 | | 12x-228=0 | | (5x-5)/6+x=5 | | 5x-12=-6 | | (3x+43)+(2x+57)=180 | | 9x+8=x+33 | | (x+12)+98=180 | | 2x+8+9=29 | | 7y-8=15 | | (8x-1)+55+62=180 | | (18/3)=(x/63) | | 8x-1-296=0 | | 7x=23=86 | | 45+4x=9 | | 2x2-20x=8 | | 4x=5.25 | | 3^x+5=24 | | 9v=20+5v |