2m+(-1/2m-11)=-5

Simple and best practice solution for 2m+(-1/2m-11)=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2m+(-1/2m-11)=-5 equation:



2m+(-1/2m-11)=-5
We move all terms to the left:
2m+(-1/2m-11)-(-5)=0
Domain of the equation: 2m-11)!=0
m∈R
We add all the numbers together, and all the variables
2m+(-1/2m-11)+5=0
We get rid of parentheses
2m-1/2m-11+5=0
We multiply all the terms by the denominator
2m*2m-11*2m+5*2m-1=0
Wy multiply elements
4m^2-22m+10m-1=0
We add all the numbers together, and all the variables
4m^2-12m-1=0
a = 4; b = -12; c = -1;
Δ = b2-4ac
Δ = -122-4·4·(-1)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{10}}{2*4}=\frac{12-4\sqrt{10}}{8} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{10}}{2*4}=\frac{12+4\sqrt{10}}{8} $

See similar equations:

| 6u^2-27u+12=0 | | 45=5(y-91) | | 10+2-x÷3=7 | | 4(x-3)+2x=1 | | 6p^-2-27p^-1+12=0 | | 20+5y=55 | | 2/x+1/2=7/2x | | x-4.2=6.5 | | -10p-11=19-4p | | 5x=+334=234024320432 | | 89/x=4/3 | | r/3+4=8 | | 2−y=23 | | x+6/2=-8 | | x/4=9.3 | | 4(4n)=20 | | 2(x+6)=(7x-3) | | Ñ8c-9=62c-12-4c | | 2x+3x+4x=452 | | 16x-8+1=16x-7 | | 16-3u=10 | | 2/x-3=6 | | 12(x+9=-108 | | 4p−2p=20 | | 5=-7+2h | | (X+1/4)(x+9)=0 | | 2x+7x2–9x=+21x3+5x+15 | | -2=-8w+6(w-3) | | 5x-70=3x | | -5+n=3 | | 15n^2+72+54=0 | | 2x+x/2=6 |

Equations solver categories