If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-6k-80=0
a = 2; b = -6; c = -80;
Δ = b2-4ac
Δ = -62-4·2·(-80)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-26}{2*2}=\frac{-20}{4} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+26}{2*2}=\frac{32}{4} =8 $
| 7x-10=-12 | | -2p+5=5p-8 | | -9+9x=-63 | | 4x-18=x+48 | | 7x-29=10x-83 | | 9x-12=10x-14 | | 4x+51=7x+39 | | 12z²=7z²+20 | | 28=4(x+20 | | (0.8+0.7x)/x=0.86 | | 1÷4(8x+4)=3 | | 34+8x=6(1+6x) | | 20x-6=-16 | | -8(x+4)+6=3(x-4) | | 8(x+4)+6=3(x-4) | | 8x=-31 | | x+3/2=17-x/3 | | 53=3x-95 | | 2(1+6x)+2(3‐6x)=7x-5x | | (x+3)/2=17-x/3 | | 18z=40z+5 | | x=6x-65 | | 4x-1=8x-89 | | 10x-82=9x-73 | | 7y=7y+84 | | 11/5x-1/10x=6/5 | | 0.1=x/25 | | 10z=40z-5 | | 14/3=(60-2x)÷9 | | 0=-0.01x^2+0.3x+2 | | 2x-4(3x+6)=6(2x+1)-4 | | 5z²=17z²+20 |