If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+9k+4=0
a = 2; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·2·4
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*2}=\frac{-16}{4} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*2}=\frac{-2}{4} =-1/2 $
| x*1.2=133.98 | | 3^(x)+2*3^(x+1)=45 | | 3(x+456)+5(56x−45)=0 | | 5-x^2-4x^-2=0 | | 0=5x^2-4x^-2 | | 133.98=x*1.2 | | 5y^2-y+7=0 | | (11x+8)(x-7)+(3x+2)(x-7)=0 | | -6u+40=2(u+8) | | x/4-15=6 | | x/x+5=3/2 | | 1/3a+3=-5 | | 3x-5(4x+1)=-1 | | 90-4n+n=57 | | 0.25/2x=3 | | x^2+8=3x^2-14 | | x^2+8=〖3x〗^2-14 | | 2x^2-x-630=0 | | 3/1 +a=4/5 | | 6t÷9=3+t | | -+3/5x=9/10 | | 2x2+18=0 | | 5w+4=4w+6 | | .84x=6 | | (X+4)^2+(y+6)^2=9 | | 40x÷10=28 | | 9x-9x+6=6 | | 39x/16x=-80 | | 8x-8x=3 | | 2x×34=1 | | (x+2)*(x+3)*(x+4)*(x+5)-24=0 | | 3x=75-x |