If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+31k+15=0
a = 2; b = 31; c = +15;
Δ = b2-4ac
Δ = 312-4·2·15
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-29}{2*2}=\frac{-60}{4} =-15 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+29}{2*2}=\frac{-2}{4} =-1/2 $
| -3.2=x | | y+7=954 | | (6y+5)+(8y+1)=180 | | 4/u+12=16 | | 2k-32.50=$212.50 | | 4/u-12=16 | | 15=2n-13 | | 4l=5 | | -3x2=x | | 11=+9s=s | | 3j=7.5 | | –9v−6=–10v | | S2/5p=136 | | f/5+43=48 | | X⁴-6x²+1=0 | | 11x-3=2x-57 | | 14x+6=9x+41 | | G^-1(x)=10x-4 | | 19x-9=10x-90 | | 4−–j=8 | | -4n+13=-3 | | 125=5^x+10 | | k-45=6 | | 5.4(r+3r)=20r–32 | | x-4.3=2.5 | | 2a+4=16-3a2(5y-3)/3-3(5y-2)/5=8/15 | | (3)/(5)m=60 | | n/9.35=3.5 | | 3−–3j=18 | | 3x-24=4x18 | | x/4=7.8 | | g4+4=7 |