If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+15k+7=0
a = 2; b = 15; c = +7;
Δ = b2-4ac
Δ = 152-4·2·7
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-13}{2*2}=\frac{-28}{4} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+13}{2*2}=\frac{-2}{4} =-1/2 $
| -2=-5-k | | -4(1+3x)=56 | | -8=-r-5 | | -4x+4=-60 | | -4(-7x-1)=4 | | 5x-5=245 | | 7^2x+1+4*21^x-3^2x+1=0/ | | 57x+207=-21 | | -7(x+5)=-56 | | z+4.1=96 | | 5x+13+8x-17=90 | | 16-4j=4 | | 9k–26=6k–8 | | -8(-4+2n)=32 | | 17-43m=103 | | -52-14x=18 | | 2)−6+x/4=−5 | | −7(x+2)+20=9−8x | | 3(x-2)=71#2 | | -40x-130=230 | | .15x=144 | | 14-3p=-1 | | 2(y−1)+6y=−10y | | 5x+80=2x+10 | | 4.2(3.4x+5.1)=56 | | 33x-9=-207 | | -2w+6+10w=5+8w+1 | | 9(m-1)=15+9m | | 5x+27=x=11 | | 6x=15+7 | | 6x-57=-129 | | (5x6−2x4+9x3+2x−4)−(7x5−8x4+2x−11)=(5x6−2x4+9x3+2x−4)−(7x5−8x4+2x−11) |