If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k(2+3k)5=44
We move all terms to the left:
2k(2+3k)5-(44)=0
We add all the numbers together, and all the variables
2k(3k+2)5-44=0
We multiply parentheses
30k^2+20k-44=0
a = 30; b = 20; c = -44;
Δ = b2-4ac
Δ = 202-4·30·(-44)
Δ = 5680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5680}=\sqrt{16*355}=\sqrt{16}*\sqrt{355}=4\sqrt{355}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{355}}{2*30}=\frac{-20-4\sqrt{355}}{60} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{355}}{2*30}=\frac{-20+4\sqrt{355}}{60} $
| 44=5(3k+2)2k | | z/9-9=-3 | | 18-2x=3x+48 | | 2+x+1x7=28 | | 22-2(4-y)=(7-3y)•(-10) | | 9=u(4u^2-6u-6) | | x-11=38 | | 3^{2x}=21 | | (M-)=4m-8 | | 3+x/6=27 | | X-32=5x+8 | | 9(x=+10)=-90 | | 5x+2x=29 | | A^3(a^2-25)=-144a | | 6x^2-7x-165=0 | | A^4+2a=-2 | | 4+24x=20x+8 | | -8=4x=-24+26x | | 81x^2-325x+64=0 | | 8x-6-10x+15=-2 | | x3+2x2+3x-6=0 | | 21+1,5x=5x | | 16x^-2x+1=0 | | 10x-13=3x+7 | | 12x+22=4=230 | | 13z-8=31 | | 11x-17=10x-42 | | n5+3/2=3n10 | | 5a-2.2=2.8 | | -5/6=(r-4)/3 | | t1.6+5.9=-3.2 | | x3−5x2+2x−10=0 |