If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2+5h+3=0
a = 2; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·2·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*2}=\frac{-6}{4} =-1+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*2}=\frac{-4}{4} =-1 $
| s+329=605 | | w+216=987 | | 31f=589 | | -2x=7-9 | | 5x^2+60x-55=0 | | z-5=79 | | m+31=66 | | 24,3=7x-3,7 | | 14x+28=+21 | | 24=d-61 | | 24=u−61 | | m+1=93 | | d+14=42 | | y=-2-15 | | -8v+5(v-2)=-31 | | 8/88=4.44(x-7) | | n−8=44 | | x9+1=28 | | 94=h+27 | | x÷26=180 | | 4p/(7-p)=1 | | 2/2x+1=9 | | 4/x=6/13.5 | | 46+36=2-3x | | 3t2+18=0 | | 2=1.121^x | | 12+x=64 | | 5(x–2)+3=7–3(2x+1) | | 8(j-4=2(4j-16 | | 2x^2+108x-360=0 | | 4(s+8=48 | | 6/11=x/18 |