If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+19c+42=0
a = 2; b = 19; c = +42;
Δ = b2-4ac
Δ = 192-4·2·42
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-5}{2*2}=\frac{-24}{4} =-6 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+5}{2*2}=\frac{-14}{4} =-3+1/2 $
| -6(7h+6)=300 | | 13,9=2.5x | | 11x+5=14+6x | | 9j-17j=48 | | (5n+9)*2n=0 | | (2x-3)-3x=-8 | | -1.1+0.2x=3.3 | | -1.1+0.2x=0 | | 3x-8=40+10 | | 12.9=2.5x | | -(x/18)=6 | | 49+86=n | | 5(u-8)=8u-28 | | 74*40/100+60x/100=100 | | 3x/5=70 | | -6z=16=52 | | -5(3y+1)-2y=3(y-6) | | -27=-4r(-17) | | 7/8(2x-28)=14x | | 8n^2+6n-434=0 | | 5y-2+y-6=9y+10+y+13 | | 7(x+1)+2=5x+15 | | X(y+3)+5=7 | | 15/6=n/9 | | x*6=80 | | 0.13=2x-0.67 | | 6x²-33x+42=0 | | 88=(22/7)d | | 3.2/12=4x/7.5 | | 4(x+6=3x-7 | | -5x+7=-5x-7 | | 12=9c/5 |