If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+18c+40=0
a = 2; b = 18; c = +40;
Δ = b2-4ac
Δ = 182-4·2·40
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*2}=\frac{-20}{4} =-5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*2}=\frac{-16}{4} =-4 $
| 35x+12=75 | | 9=w/4-12 | | 11=49z-3 | | 3s+1=34 | | x^2+2x+1+x^2=841 | | 2x=x-60 | | 14n-70=14 | | 7x-2=4x-5x | | 15+12x=15+11x | | -y/5=57 | | x^2+2x+1=841+x^2 | | 2x+3+3x=4 | | 2(z+3)=18 | | 2x2+7x=1 | | 18=14+x | | -53=-w/8 | | x*0.6=1 | | 3x+(15)/(x+4)=7 | | 2x-10=-21 | | 2x+1=841 | | 5.64=x−5.6 | | 17+2(4+2x2)=33 | | 4x-3=6x=2 | | 5.64.4=x−5.6 | | -32=x-22 | | z^2+10z+1=0 | | 5+m=20 | | 4x^2-2=120 | | 11x-13=27+13 | | 3(4a+9)-10(a-6)=1 | | r-9=21 | | x(x^2-x)^1/3+4(x^2-x)^4/3=0 |