If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c-3(2c-5)-5=(5c+)3c-6
We move all terms to the left:
2c-3(2c-5)-5-((5c+)3c-6)=0
We add all the numbers together, and all the variables
2c-3(2c-5)-((+5c)3c-6)-5=0
We multiply parentheses
2c-6c-((+5c)3c-6)+15-5=0
We calculate terms in parentheses: -((+5c)3c-6), so:We add all the numbers together, and all the variables
(+5c)3c-6
We multiply parentheses
15c^2-6
Back to the equation:
-(15c^2-6)
-4c-(15c^2-6)+10=0
We get rid of parentheses
-15c^2-4c+6+10=0
We add all the numbers together, and all the variables
-15c^2-4c+16=0
a = -15; b = -4; c = +16;
Δ = b2-4ac
Δ = -42-4·(-15)·16
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{61}}{2*-15}=\frac{4-4\sqrt{61}}{-30} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{61}}{2*-15}=\frac{4+4\sqrt{61}}{-30} $
| _4(4c_1)+3(4c_7)=0 | | (6x^2+19x-7)(x^2+2x-10)=0 | | X^2+10x+27=-4 | | -27-3z=9(5z+7) | | -4k-8-7=32 | | -4(7-6f)=35 | | 3y-2/4-2y+3/3=2/3-y | | 6x+9x=65 | | 2(2w+w)=33 | | 3h-8h=-17 | | 2x+15=3+6x-8 | | 3/7x+24=-9 | | 14-8m=-73 | | 2x=129/36 | | 52/8*x=15/8 | | 2x^2+14x-158=0 | | 7j+37=12j-98 | | 7y+55=38y-100 | | 10h-81=h+54 | | 65s+27=99s-41 | | 13m-34=12m-15 | | 22t-18=32t-88 | | 3j-7=4j-21 | | 54a+98=95a-66 | | F(x)=10+20xM(x)=2.5 | | 17z=238 | | -2x-1=4x^2 | | 71b+30=85b+16 | | y-17=-2 | | 3p-71=p+95 | | 1/9x^2+11/3x=0 | | M(x)=2.5 |