If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c(c-1)=0
We multiply parentheses
2c^2-2c=0
a = 2; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·2·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*2}=\frac{0}{4} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*2}=\frac{4}{4} =1 $
| 6x+1=2(4x-12)+3x | | 2(1/2x)=10 | | 211=159-x | | 140+0.09x=527 | | 2x+43=75 | | 9x=12=7x+20 | | 357+0.02x=537 | | 5=4m-m=1/2 | | 357+0.02x=515 | | 3x+28=79 | | -12=-6(-8+5n | | n²=5n | | 5(3n)+6n=21 | | 5(4r+8)-6r=-44 | | 45÷y=5 | | X(x+1)+4(2x+5)=0 | | 10+4w+3w=13 | | 3x+4x=4+5(2x+5) | | 4-4x=6+x | | X(x-1)=5x-3 | | 6x+8=2(x+4) | | 5^3x+1+5^3x+2=150 | | 0=(4n+4)/5 | | -4x-5=25 | | 8x-53=5x+22 | | (9x-4)+(8x+2)+(13x+30)+(19x-11)=180 | | -3x-4=-2x+5 | | -3x+1-2(x+1)=2x+2 | | 2x+3(8-x)=16 | | 30t=225 | | -2+5y=7 | | 29=4x+45 |