2b-5+(b-6)=2b(3-8b)

Simple and best practice solution for 2b-5+(b-6)=2b(3-8b) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2b-5+(b-6)=2b(3-8b) equation:



2b-5+(b-6)=2b(3-8b)
We move all terms to the left:
2b-5+(b-6)-(2b(3-8b))=0
We add all the numbers together, and all the variables
2b+(b-6)-(2b(-8b+3))-5=0
We get rid of parentheses
2b+b-(2b(-8b+3))-6-5=0
We calculate terms in parentheses: -(2b(-8b+3)), so:
2b(-8b+3)
We multiply parentheses
-16b^2+6b
Back to the equation:
-(-16b^2+6b)
We add all the numbers together, and all the variables
-(-16b^2+6b)+3b-11=0
We get rid of parentheses
16b^2-6b+3b-11=0
We add all the numbers together, and all the variables
16b^2-3b-11=0
a = 16; b = -3; c = -11;
Δ = b2-4ac
Δ = -32-4·16·(-11)
Δ = 713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{713}}{2*16}=\frac{3-\sqrt{713}}{32} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{713}}{2*16}=\frac{3+\sqrt{713}}{32} $

See similar equations:

| x+11/3=25/6 | | (x+16)-(x)=90 | | H=-2t^2+16t-14 | | (x+16)-(2x+16)=180 | | 5x5.7=28.5 | | 5x-2-2x+15=18+x | | (x+16)+(x)=90 | | 9x+4=4x+5= | | 108+(5x+7)=180 | | 15=3y−1 | | 5x-(2x-8)=5x7+(3x+15) | | 2x-56=-22 | | 6x+5+86=90 | | 6x+5+86=180 | | 6x+5=86 | | 5x+2+62=180 | | 5x+2+62=90 | | x*256=177147 | | -4+2c=7c-9-8c= | | 3x-5+x+5=90 | | -3x+12=-36 | | 8x-3=74 | | x+8-3x=8x-12 | | 2x+7+x=-2x+52 | | 756/785=x/46,500 | | 9x+4=2x+7= | | 10x-4x=-144 | | x+-7x=-36 | | 18–3a=3 | | -4x-3x=-63 | | 7a-2+2a-8=4-5a-7 | | -2x+7x=-55 |

Equations solver categories